The paper presents the proposed protocol a hybrid approach is applied for clustering of sensor networks combining BBO and K-means algorithm. The performance of the protocol is compared with SEP, IHCR and ERP in terms of stability period, network life time, residual energy and throughput. The simulation results show that the proposed protocol named as KBBO has improved the performance of these parameters significantly.
Słowa kluczowe: clustering, network life time, stability period, optimization
Abstract
W pracy przedstawiono protokół, w którym stosuje się podejście hybrydowe do grupowania sieci czujników łączących algorytm BBO i K-średnich. Jego wydajność jest porównywana z SEP, IHCR i ERP pod względem okresu stabilności, żywotności sieci, energii resztkowej I przepustowości. Wyniki symulacji pokazują, że prezentowany protokół nazwany KBBO znacznie poprawił wydajność tych parametrów.
Keywords: grupowanie, żywotność sieci, okres stabilności, optymalizacja
A WSN consists of a large number of sensor nodes which can sense physical properties of environment such as humidity, temperature, sound, etc. , collect sensed data and transmit it to the base station through a wireless link. Sensor nodes are characterized by limited energy, low processing capability, low communication range and low memory capacity. Sensor nodes have become more smarter and cheaper in recent days due to development in Micro-Electro-Mechanical Systems (MEMS) [1]. Due to availability of smarter and cheaper sensors, WSN has received wide acceptability with potential application in a large domains: environment monitoring, disaster warning system, health system and military application [2]. Unlike a traditional network, the major research challenge in WSN is how to maximize the network lifetime by reducing energy consumption of the sensor nodes. Clustering is a key technique to reduce energy consumption and extend the lifetime of the network. Besides reduction in energy consumption and extending network life time , clustering technique has many other advantages: scalability, latency reduction, collision avoidance, less overhead and load balancing [3] .Selection of cluster heads (CHs) in energy efficient clustering mechanisms depends upon several factors: residual energy of a node, initial energy, average energy of a network and energy consumption of the node [4]. Clustering is also a key technique for implementing energy efficient routing in WSN. LEACH [5], SEP [6], HEED [7] and PEGASIS [8] are some prominent clustering based routing protocols. The probabilistic models are used to select CHs in these protocols which may result in random selection of CHs irrespective of distribution of nodes and the residual energy of the network. In recent days a number of meta-heuristic techniques such as GA [9], PSO [10] and BBO [11] have been applied in design of energy efficient clustering based routing protocols for WSN. I [...]
Prenumerata
Bibliografia
[1] Yick J., Biswanath M., Dipak G., Wireless sensor network
survey, Computer networks 52 (2008), No. 12, 2292-2330
[2] Akyildiz I.F., et al., A survey on sensor networks, IEEE
Communications magazine 40 (2002), No. 8, 102-114
[3] Liu X. A survey on clustering routing protocols in wireless
sensor networks, Sensors 12 (2012), No. 8, 11113-11153
[4] Katiyar V, Narottam C., Surender S., Clustering algorithms for
heterogeneous wireless sensor network: Asurvey, International
Journal of Applied Engineering Research 1 (2010), No. 2, 273
[5] Heinzelman W.B., Chandrakasan A.P., Balakrishnan H., An
application-specific protocol architecture for wireless
microsensor networks, IEEE Transactions on wireless
communications 1 (2002), No. 4, 660-70
[6] Georgios S., Matta I., Bestavros A., SEP: A stable election
protocol for clustered heterogeneous wireless sensor networks,
Boston University Computer Science Department, 2004
[7] Ossama Y., Fahmy S., HEED: a hybrid, energy-efficient,
distributed clustering approach for ad hoc sensor
networks, IEEE Transactions on mobile computing, 3 (2004),
No. 4, 366-379
[8] Lindsey S., Cauligi S.R., PEGASIS: Power-efficient gathering in
sensor information systems, Aerospace conference
proceedings 2002 IEEE, 3 (2002)
[9] Michalewicz Z. Genetic algorithms + data structures = evolution
programs, Springer, (2009)
[10] Kennedy J., Particle swarm optimization, Encyclopedia of
machine learning Springer , (2011), 760-766
[11] Simon D., Biogeography-based optimization, IEEE
transactions on evolutionary computation, 12 (2008), No. 6,
702-713
[12] Matin A.W., Sajid H., Intelligent hierarchical cluster-based
routing, Life, 7 (2006), 8
[13] Attea B.A., Khalil E.A., A new evolutionary based routing
protocol for clustered heterogeneous wireless sensor
networks, Applied Soft Computing 12 (2012), No. 7,1950-1957
[14] Basagni S. et al., A generalized clustering algorithm for peer-topeer
networks, Workshop on Algorithmic Aspects of
Communication, (1997)
[15] Ma H. et al., Biogeography - Based Optimization: A 10 year
Review, IEEE transaction on emerging topics in computational
intelligence,9 (2017), No.5
[16] Han J., Kamber M., Data Mining: Concepts and Techniques,
Morgan Kaufman Publishers, 2 (2006)
[17] Krak Yu.V., Barmak A.V., Baraban E.M., Usage of NURBSapproximation
for construction of spatial model of human face,
Journal of Automation and Information Sciences, 43 (2011),
No. 2, 71-81
[18] Kirichenko, M.F., Krak, Yu.V., Polishchuk, A.A. Pseudo inverse
and projective matrices in problems of synthesis of functional
transformers, Kibernetika i Sistemnyj Analiz, 40 (2004), No. 3,
116-129
[19] Krak Yu.V., Dynamics of manipulation robots: Numericalanalytical
method of formation and investigation of
computational complexity, Journal of Automation and
Information Sciences, 31 (1999), No. 1-3, 121-128
[20] Wójcik W., Kotyra A., Golec T. et al., Vision based monitoring
of coal flames, Przegląd Elektrotechniczny, 87 (2008), n.3, 241-
243
[21] Vassilenko, Valtchev S., Teixeira J.P., Pavlov S., Energy
harvesting: an interesting topic for education programs in
engineering specialities, Internet, Education, Science, (2016)
149-156
[22] Kuila P., Suneet K.G., Prasanta K.J., A novel evolutionary
approach for load balanced clustering problem for wireless
sensor networks, Swarm and Evolutionary Computation, 12
(2013), 48-56
[23] Kuila P., Prasanta K. J. Energy efficient clustering and routing
algorithms for wireless sensor networks: Particle swarm
optimization approach, Engineering Applications of Artificial
Intelligence, 33 (2014), 127-140
[24] Al-Maitah M., Timchenko L.I., Kokriatskaia N.I. et al., Parallelhierarchical
network as the model of neurocomputing,
Proceedings of SPIE 10808, (2018)
[25] Pal R., Himashu Mittal A.P., Mukesh S., BEECP: Biogeography
optimization-based energy efficient clustering protocol for
HWSNs, Contemporary Computing (IC3), (2016)
[26] Lalwani P., Haider B., Chiranjeev K., BERA: a biogeographybased
energy saving routing architecture for wireless sensor
networks, Soft Computing, (2016), 1-17
[27] Vyatkin S.I., Romanyuk S.A., Pavlov S.V., et al., Using lights in
a volume-oriented rendering", Proc. SPIE 10445, (2017)
[28] Vyatkin S.I., Romanyuk A.N., Gotra Z.Y, et al., Offsetting,
relations, and blending with perturbation functions, Proc. SPIE
10445, (2017)
[29] Vyatkin, S.I., Romanyuk, A.N., Pavlov, S.V., et al., Fast ray
casting of function-based surfaces, Przegląd Elektrotechniczny,
93 (2017), No. 5, 83 - 86.
[30] Timchenko L.I., Pavlov S.V., Kokryatskaya N.I., et al., Bioinspired
approach to multistage image processing, Proc. SPIE
10445, (2017)
[31] Mosorov V., Panskyi T., Biedron S., Testing for revealing of
data structure based on the hybrid approach, Informatyka,
Automatyka, Pomiary w Gospodarce i Ochronie Środowiska -
IAPGOŚ, 7 (2017), No. 2, 119-122
[32] Romanyuk O.N., Pavlov S.V., Melnyk O.V., Romanyuk S.O.,
Smolarz A., et al., Method of anti-aliasing with the use of the
new pixel model, Proc. SPIE 9816, (2015)
[33] Romanyuk S.O., Pavlov S.V., Melnyk O.V., New method to
control color intensity for antialiasing, Control and
Communications (SIBCON), (2015)