This paper presents multi-objective algorithm for optimal designing of permanent magnet synchronous motors. The special attention is paid on the formulation the optimization problem, especially on the correct selection of the partial criteria which constitute multi-objective function and constraints. It is pointed out that connection of multimodal parameter (cogging torque) and unimodal parameter (electromagnetic torque) in one multi-objective compromise function can lead to erroneous operation of optimization algorithm. Therefore, decomposition of the optimization task into two-level is proposed. The optimization calculation has been executed for permanent magnet synchronous motor structure with hybrid excitation system.
Słowa kluczowe: multi-objective optimization, genetic algorithm, finite element method, permanent magnet synchronous motors.
Abstract
W artykule przedstawiono algorytm do optymalizacji magnetoelektrycznych silników synchronicznych. Przedstawiono rozważania dotyczące poprawnego formułowania kompromisowych funkcji celu, w szczególności odpowiedniego doboru kryteriów cząstkowych. Wykazano, że włączenie do kompromisowej funkcji jednocześnie członu reprezentującego elektromagnetyczny moment użyteczny i moment zaczepowy może prowadzić do błędnego działania algorytmu optymalizacji. Zaproponowano dekompozycję zadania optymalizacji na dwa etapy. Przedstawiono i omówiono wybrane wyniki obliczeń optymalizacyjnych dla magnetoelektrycznego silnika synchronicznego z hybrydowym układem wzbudzenia
Keywords: optymalizacja, algorytmy genetyczne, metoda elementów skończonych, magnetoelektryczne silniki synchroniczne
In comparison to high efficiency induction motors, the permanent magnet synchronous motors (PMSM) have many advantages: large torque-to-mass ratio, high efficiency, constant speed operation, and long operational life [1, 2, 3]. At present, the manufacturers of the permanent magnets produce high density magnets with better magnetic, mechanics and thermal properties. On the other hand, there are increasing requirements regarding energy saving and natural environmental protection. Therefore, the rapid development of the constructions of permanent magnet (PM) motors, in particular PM synchronous motors is observed. The PMSM machines are usually small and medium power motors [4]. The stator winding is distributed in the slots and often are wye connected. The PMSM motor winding are similar to the winding used in induction motors. Depending on the application of the motor and properties of used magnetic material, the PMSM structures may differ considerably. The way of mounting, types and dimensions of the permanent magnets in the rotor have essential impact on motor parameters [5]. The magnets may be mounted on the surface or embedded inside the rotor [6, 7, 8]. Typical structures are shown in Fig. 1. In recent years, the technology of magnetic powder has develops rapidly. This concerns both: hard and soft magnetic materials. Using this technology, it is possible to easy formation of the magnetic circuit geometry and also allows shaping the magnetic properties which depend on the used admixtures. More and more often designers and constructors of the permanent magnet machines make use of advantage of this technology [9]. Electric motors with hybrid excitation systems are constructed. In such constructions hybrid magnets excitation system compound from two or even several magnetic materials (with different properties) is often applied. Two chosen new constructions with hybrid rotors are presented in Fig. 2. New constructions of pe [...]
Prenumerata
Bibliografia
[1] Las kar i s K. , Kladas A. , Comparison of internal and
surface permanent-magnet motor topologies for electric vehicle
applications, International Symposium on Advanced
Electromechanical Motion Systems and Electric Drives Joint
Symposium, (2009), DOI: 10.1109/ELECTROMOTION.2009.
5259126
[2] Barański M., Szel ąg W., Jędryczka C., Influence of
temperature on partial demagnetization of the permanent
magnets during starting process of line start permanent
magnet synchronous motor, International Symposium on
Electrical Machines - SME 2017, DOI: 10.1109/ISEM.2017.
7993535.
[3] Awah C. C, Okoro O. I . , Torque characteristic of
double-stator permanent magnet synchronous motor, Archives
of Electrical Engineering, 66 (2017), no. 4, 815-828
[4] Yang B., Wang X., Yang Y., Comparative parameters
investigation of composite solid rotor applied to line-start
permanent-magnet synchronous motors, IEEE Transactions
on Magnetics, (2018), DOI: 10.1109/TMAG.2018.2844550
[5] Bar caro M. , Bianchi N. , Design considerations of
permanent magnet machines for automotive applications,
COMPEL, 32 (2013), no. 1, 248 - 277
[6] Torrent M., Perat J. I., Jiménez J. A., Permanent
magnet synchronous motor with different rotor structures for
traction motor in high speed trains, Energies, 11 (2018);
doi:10.3390/en11061549
[7] Liu X. , Lin Q. , Fu W. , Optimal design of permanent
magnet arrangement in synchronous motors", Energies, 10
(2018), no. 1700, DOI:10.3390/en10111700
[8] Zawi lak T. , Zawi lak J. , Properties and parameters of
the synchronous motors with permanent magnets, Przegląd
Elektrotechniczny, 93 (2017), no. 11, 94 - 97
[9] Ś lusarek B. , Kapelski D., Antal L., Zalas P.,
Goździewic z M., Synchronous motor with hybrid
permanent magnets on the rotor, Sensors, 17 (2014), no. 7,
12425 - 12436
[10] Belahcen A., Floran M., El-Hadi-Zaim M. ,
Kolondzovsk i Z. , Combined FE and particle swarm
algorithm for optimization of high speed PM synchronous
machine, COMPEL, 34 (2015), no. 24, 475 - 484
[11] Knypiński Ł., Nowak L., Field-circuit simulation of the
dynamics of the outer rotor permanent magnet brushless DC
motor, COMPELl, 30 (2011), no. 3, 929-940
[12] M ikołajewi cz J . , The impact of speed as well as selected
parameters of slot insulation on the distribution of the
temperature in linear motion converters, Archives of Electrical
Engineering, 65 (2016), no. 4, pp. 855 - 864
[13] Knypi ński Ł., Nowak L. , Jędryczka C., Optimization
of the rotor geometry of the line-start permanent magnet
synchronous motor by the use of particle swarm optimization,
COMPEL, 34 (2015), no. 3, 882 - 892
[14] Wojciechowski R., Jedryczka C., Lukaszewicz
P. , Kapelsk i D. , Analysis of high speed
permanentamagnet motor with powder core material,
COMPEL, 31 (2012), no. 5, 1528 - 1540
[15] Bednarek K., Nawrowski R., Tomczewski A., An
application of genetic algorithm for three phases screened
conductors optimization, PARELEC’2000 International
Conference on Parallel Computing in Electrical Engineering,
Trois-Rivieres, Canada, August 2000, 218-222
[16] J ędryczka C., Knypi ński Ł., Demenko A.,
Sykul ski J . K. , Methodology for cage shape optimization
of permanent magnet synchronous motor under line start
condition, IEEE Transactions on Magnetics, 54 (2018), no. 3,
8102304