In the paper, a device for in vitro electromagnetic stimulation of cells at low frequency (75 Hz) is considered. In particular, shape and position of a well-plate are identified in order to obtain a homogeneous stimulation and to maximize the space allotted to cell culture. To this end, the BiMO and -BiMO optimization algorithms, which have shown good performances in multi-objective optimization of electromagnetic devices, are applied.
Słowa kluczowe: cell stimulation, force distribution, shape synthesis, multi-objective optimization.
Abstract
W artykule opisano urządzenie do elektromagnetycznej stymulacji komórek metodą in vitro z wykorzystaniem sygnału o niskiej częstotliwości (75 Hz). W szczególności rozważane były kształt i położenie płytki do hodowli komórkowej w celu uzyskania jednorodnej stymulacji i maksymalizacji przestrzeni obejmującej hodowlę komórkową. W tym celu zastosowano algorytmy optymalizacji BiMO i -BiMO, które umożliwiły optymalizację wielokryterialną urządzeń elektromagnetycznych.
Keywords: stymulacja komórek, rozkład sił, synteza kształtu, optymalizacja wielokryterialna
In the last decades, the electromagnetic stimulation in vitro and in vivo has become a promising research field because it allows to modulate the behaviour of cells and tissues. In particular, when the cells are exposed to a timevarying magnetic field, an electric field is induced and thus a current density arises, because the cell culture medium is conductive. The interaction between the induced current density and the time-varying magnetic field gives rise to mechanical stress acting on the cells [1]. In this paper, new kind of wells for obtaining a homogeneous stress and stimulation of a considerable large amount of cells are designed [2]. This design problem is formulated as a multiobjective one and its solution is found by means of the Biogeography-Inspired Multi-objective Optimization algorithms, BiMO [3,4] and the μ-BiMO algorithms [5]. These methods have shown to be successful for various applications [6-10]. In particular, when the forward problem requires a high computational time e.g. when Finite Element FE simulations are used, the μ-BiMO algorithm gave good results. In general, the aim of this study has been to design different optimally-shaped wells for electromagnetic stimulation of cells [11-15]. The forward problem The electromagnetic stimulation of cells is done by means of the so-called “electromagnetic bioreactor" (Fig. 1), which is a device based on two solenoids connected in series and powered by a pulse generator (Igea, Carpi, Italy) at 75 Hz [11]. In order to simulate the electric E and magnetic B fields in the bioreactor, a 3D time-dependent finite-element model was implemented in MagNet, a commercial code by Mentor-Infolytica. Fig.1. Electromagnetic bioreactor Fig.2. Magnetic induction field [T] distribution in the middle of the bioreactor In the conductive regions, the electromagnetic problem is solved in terms of the phasors of the electric vector potential T and the scalar ma [...]
Prenumerata
Bibliografia
[1] M. E. Mognaschi, P. Di Barba, G. Magenes, A. Lenzi, F. Naro,
L. Fassina, Field models and numerical dosimetry inside an
extremely-low-frequency electromagnetic bioreactor: the
theoretical link between the electromagnetically induced
mechanical forces and the biological mechanisms of the cell
tensegrity, Springerplus, 3 (2014).
[2] Di Barba P., Fassina L., Magenes G., Mognaschi M.E., “Shape
synthesis of a well-plate for electromagnetic stimulation of
cells," International Journal of Numerical Modelling: Electronic
Networks, Devices and Fields, in press 2019.
[3] Di Barba P., Dughiero F., Mognaschi M.E., Savini A., Wiak S.,
Biogeography-Inspired Multiobjective Optimization and MEMS
Design, IEEE Transactions on Magnetics, 52 (2016), No 3.
[4] Di Barba, P., Mognaschi, M.E., Savini, A., Wiak, S. Island
biogeography as a paradigm for MEMS optimal design,
International Journal of Applied Electromagnetics and
Mechanics, 51 (2016), No s1, S97-S105.
[5] Mognaschi M.E., Micro biogeography-inspired multi-objective
optimisation for industrial electromagnetic design, Electronics
Letters, 53 (2017), No. 22.
[6] Di Barba, P., Mognaschi, M.E., Venini, P., Wiak S.,
Biogeography-inspired multiobjective optimization for helping
MEMS synthesis. Archives of Electrical Engineering, 66 (2017),
No 3.
[7] Di Barba, P., Mognaschi, M.E., Krawczyk, A., The
biogeography-inspired optimization for the design of coils for
nerve stimulation. 17th IEEE International Conference on
Smart Technologies, EUROCON 2017 - Conference
Proceedings, 542-545.
[8] Di Barba, P., Dughiero, F., Forzan, M., Mognaschi, M.E., Sieni,
E., New solutions to a multi-objective benchmark problem of
induction heating: An application of computational
biogeography and evolutionary algorithms. Archives of
Electrical Engineering, 67 (2018). No 1, 139-149.
[9] Di Barba P., Mognaschi M.E., Dughiero F., Forzan M., Sieni E.,
Multi-objective optimization of a solenoid for MFH: a
comparison of methods, Proceedings of the 44th Annual
Conference of the IEEE Industrial Electronics Society, 21-23
October 2018, Washington DC, USA.
[10] Di Barba P., Mognaschi M.E., Lowther D.A., Sykulski J. K.,
New improved solutions to a benchmark TEAM problem for
Pareto optimization in magnetics, in press on IEEE Trans. on
Magn., 2019.
[11] Fassina L., Visai L., Benazzo F., Benedetti L., Calligaro A.,
Cusella De Angelis M. G., Farina A., Maliardi V., Magenes G.,
Effects of electromagnetic stimulation on calcified matrix
production by SAOS-2 cells over a polyurethane porous
scaffold, Tissue Engineering, 12 (2006), 1985-1999.
[12] Osera C., Amadio M., Falone S., Fassina L., Magenes G.,
Amicarelli F., Ricevuti G., Govoni S., Pascale A., Pre-exposure
of neuroblastoma cell line to pulsed electromagnetic field
prevents H2O2-induced ROS production by increasing MnSOD
activity, Bioelectromagnetics, 36 (2015), 219-232.
[13] Fassina L., Saino E., Visai L., Magenes G.,
Electromagnetically enhanced coating of a sintered titanium
grid with human SAOS-2 osteoblasts and extracellular matrix,
Conf Proc IEEE Eng Med Biol Soc, 2008, 3582-3585.
[14] Fassina L., Saino E., Sbarra M. S., Visai L., Cusella De Angelis
M. G., Mazzini G., Benazzo F., Magenes G., Ultrasonic and
electromagnetic enhancement of a culture of human SAOS-2
osteoblasts seeded onto a titanium plasma-spray surface,
Tissue Engineering Part C Methods, 15 (2009), 233-242.
[15] Osera C., Fassina L., Amadio M., Venturini L., Buoso E.,
Magenes G., Govoni S., Ricevuti G., Pascale A., Cytoprotective
response induced by electromagnetic stimulation on SH-SY5Y
human neuroblastoma cell line, Tissue Engineering Part A, 17
(2011), 2573-2582.