Wyniki 1-8 spośród 8 dla zapytania: authorDesc:"Bartosz HRYCAK"

Mikrofalowy generator mikrowyładowania w azocie

Czytaj za darmo! »

Prezentowany mikrofalowy generator mikroplazmy jest urządzeniem wytwarzającym plazmę pod ciśnieniem atmosferycznym. Mikroplazma w tym przypadku wzbudzana jest mikrofalami o częstotliwości 2,45 GHz i mocy od 40 W do 300 W. Jako gaz roboczy zastosowano azot. Długość i szerokość płomienia plazmy wynosi odpowiednio 1,5-25 mm i 1,5-10 mm. Jednym z możliwych zastosowań generatora mikroplazmy jest oczyszczanie i aktywacja materiałów. Abstract. The microwave microplasma generator is a device used to produce small non-thermal plasma at atmospheric pressure. In our experiment the microplasma is generated by using 2,45 GHz microwaves at powers between 40 W to 300 W and nitrogen as the working gas. The length and diameter of plasma jet is 1,5-25 mm and 1,5-10 mm, respectively. One of the application of the microwave microplasma generator is the tissue and material treatment. (Microwave microplasma generator operated at atmospheric pressure nitrogen). Słowa kluczowe: mikroplazma, plazma generowana mikrofalowo, generator plazmy, mikrowyładowanie pod ciśnieniem atmosferycznym. Keywords: microplasma, microwave plasma, plasma generator, atmospheric microdischarge. Wstęp Plazma, czyli zjonizowany gaz składa się z dodatnio lub ujemnie naładowanych jonów, elektronów oraz cząstek obojętnych. Dzisiejsze czasy cechuje powszechne dążenie do miniaturyzacji. Także w technice plazmowej występuje spore zainteresowanie plazmą o małych rozmiarach rzędu od μm do mm, zwanej mikroplazmą. Podyktowane jest to ekonomicznością wytworzenia i eksploatacji urządzeń oraz ich funkcjonalnością. Rozwój generatorów mikroplazmy pracujących pod ciśnieniem atmosferycznym jest jednym z trendów w inżynierii plazmowej. Mikroplazma pod ciśnieniem atmosferycznym wytwarzana jest głównie dla zastosowań technologicznych takich jak destrukcja szkodliwych gazów, spawanie, modyfikacja powierzchni (proces czyszczenia płytek drukowanych lub powierzchni silikonowych) [1-3], źródła promi[...]

Tuning characteristics of cylindrical microwave plasma source operated with argon, nitrogen and methane at atmospheric pressure

Czytaj za darmo! »

The cylindrical microwave plasma source (MPS) is a device used to produce high temperature plasma at atmospheric pressure and high working gases flow rates. In our experiment the plasma was generated with 2.45 GHz microwaves at powers between 600 W and 6000 W. At optimal positions of movable plunger, the use of argon, nitrogen and methane as the working gases caused, that 15 %, 0 % and 17 % of the incident power was reflected, respectively. The MPS can be used in gas processing applications. Streszczenie. Prezentowany cylindryczny mikrofalowy generator plazmy jest urządzeniem wytwarzającym plazmę o wysokiej temperaturze pod ciśnieniem atmosferycznym, przy wysokich przepływach gazów. Plazma wzbudzana jest mikrofalami o częstotliwości 2,45 GHz i mocy od 600 W do 6000 W. Odpowiednio dla argonu, azotu oraz metanu przy optymalnym położeniu ruchomego zwarcia moc fali odbitej wynosiła 15%, 0% oraz 17% mocy fali padającej. Generator plazmy może być używany m.in. do obróbki gazów. (Charakterystyki strojenia cylindrycznego mikrofalowego generatora plazmy w argonie, azocie i metanie pod ciśnieniem atmosferycznym). Keywords: plasma sources, microwave discharges, tuning characteristics, gas processing. Słowa kluczowe: generatory plazmy, wyładowania mikrofalowe, charakterystyki strojenia, obróbka gazów. Introduction Microwave discharges offer significant advantages as plasma sources. When properly designed, they are very stable and the efficiency of microwave power transfer to plasma can achieve almost 100%. They allow obtaining plasmas of high purity. As a rule, microwave plasmas are characterized by high density of electrons and active species, such as ions and free radicals [1]. The microwave plasma at atmospheric pressure is one of the plasma techniques providing the electron temperature of 4000 - 10000 K and the heavy particle temperature of 2000 - 6000 K [2, 3]. Recently, microwave plasma sources (MPSs) operated at atmospheric pressure have [...]

Compact microwave plasma device for surface treatment DOI:10.15199/48.2018.07.07

Czytaj za darmo! »

Plasma (ionised gas) is an object of interest of research centres and commercial companies. Nowadays, from industry point of view, there is a growing interest in not expensive plasma sources for plastic, metal, glass and composite surface modifications. The plasma treated material changes its surfaces properties. For example, as a result of plasma treatment an increase of surface’s adhesion potential can be obtained. Due to plasma modification hydrophobic and hydrophilic surface properties can be established. Using plasma it is also possible to coat material surface with protecting layer or layer of specific characteristics. So, plasma surface treatment can be used in surface cleaning, activating and coating and can be applied for example in cosmetic packaging, medical implants or cars parts [1-9]. In addition to the above, recently, attention is paid to the reduction of investment as well as operating costs of the surface treatment process. The importance of small devices, with low energy consumption, are increasing. Thus the so called “downsizing" is also a recent trend in a plasma science and engineering. Recently existing flame conventional devices dedicated to surface treatment on one hand are not environmentally friendly, on other hand can cause treated surface overheating leading to treated surface deformation. Meanwhile the plasma of moderate temperature is preferable. Against, applied radio frequency (RF) based methods of plasma surface modification are of high cost which further increases investment and operating costs. In this case one of the way is to use a microwave (2.45 GHz) frequency plasma at atmospheric pressure. Operating at atmospheric pressure eliminates an expensive vacuum apparatus. Using standard microwave frequency of 2.45 GHz allows to use cheap commercial magnetron such as that installed in microwave oven. Therefore, to fulfill industry expectations of low cost source of non-thermal [...]

Low-temperature microwave microplasma for bio-decontamination

Czytaj za darmo! »

This paper presents results of the investigations of an atmospheric pressure Ar and Ar/O2 microwave (2.45 GHz) microplasmas which can be used in the biomedical applications. The microplasma in the form of a column was generated using a simple, coaxial microwave microplasma source (MMS). The gas temperature at the microplasma tip was as low as about 300 K. This makes the microwave microplasma suitable for many applications, including bio-medical. Preliminary test with Escherichia coli K-25 indicated antibacterial effect of Ar and Ar/O2 microplasmas. Streszczenie. Prezentowana mikrofalowa (2,45 GHz) mikroplazma Ar oraz Ar/O2 może znaleźć zastosowanie w medycynie, np. przy dezynfekcji. Mikroplazmę w kształcie kolumny wytwarza prostej konstrukcji, współosiowy mikrofalowy generator mikroplazmy. Temperatura na szczycie kolumny mikroplazmy jest niska, rzędu 300 K. To czyni mikroplazmę użyteczną do zastosowań w medycynie. Wstępne testy z użyciem bakterii Escherichia coli K-25 wskazują na antybakteryjne działanie mikroplazmy Ar i Ar/O2. (Niskotemperaturowa mikrofalowa mikroplazma do biodekontaminacji). Keywords: plasma sources, microwave discharges, tuning characteristics, gas processing. Słowa kluczowe: generatory plazmy, wyładowania mikrofalowe, charakterystyki strojenia, obróbka gazów. Introduction The interest in the atmospheric pressure low-temperature microplasmas is growing because of many merits of such a microplasma: small size (from μm to several mm), portability of the source, easy to use, low investment and operation costs. The microplasmas can be used for microwelding and surface modification, as a light sources, and in atomic spectroscopy systems. Also there is interest in the microplasmas used in the biomedical applications such as sterilization of medical instruments, high-precision surgery, cells treatment and deactivation of bacteria and viruses [1-7]. Sterilization is a physical or chemical process that impairs or elim[...]

Tuning characteristics of coaxial microwave plasma source operated with argon, nitrogen and methane at atmospheric pressure

Czytaj za darmo! »

The coaxial microwave plasma source (MPS) is a device used to produce high temperature plasma at atmospheric pressure and high working gases flow rates. In our experiment the plasma was generated with 2.45 GHz microwaves at powers between 600 W and 5600 W. At optimal positions of movable plunger, the use of argon, nitrogen and methane as the working gases caused, that 2 %, 1 % and 5 % of the incident power was reflected, respectively. The MPS can be used in gas processing applications. Streszczenie. Prezentowany współosiowy mikrofalowy generator plazmy jest urządzeniem wytwarzającym plazmę o wysokiej temperaturze pod ciśnieniem atmosferycznym, przy wysokich przepływach gazów. Plazma wzbudzana jest mikrofalami o częstotliwości 2,45 GHz i mocy od 600 W do 5600 W. Odpowiednio dla argonu, azotu oraz metanu przy optymalnym położeniu ruchomego zwarcia moc fali odbitej wynosiła 2%, 1% oraz 5% mocy fali padającej. Generator plazmy może być używany m.in. do obróbki gazów. (Charakterystyki strojenia współosiowego mikrofalowego generatora plazmy w argonie, azocie i metanie pod ciśnieniem atmosferycznym). Keywords: plasma sources, microwave discharges, tuning characteristics, gas processing. Słowa kluczowe: generatory plazmy, wyładowania mikrofalowe, charakterystyki strojenia, obróbka gazów. Introduction Recently, microwave plasma sources (MPSs) operated at atmospheric pressure have been developed [1-16]. Such devices were used in spectroscopy, technological processes like surface treatment, deposition of thin films and sterilization. They also found applications in the processing of various gases. Treatment of hazardous gases [17-19] and production of hydrogen via methane conversion [20, 21] in microwave atmospheric pressure plasmas were reported lately. This paper presents results of experimental investigations with the waveguide-based coaxial microwave plasma source (MPS) [13] operated at atmospheric pressure at [...]

Spectroscopic characterization of plasma generated by microwave device for surface treatment DOI:10.15199/48.2018.07.22

Czytaj za darmo! »

Nowadays industry is highly interested in various surface treatment. Plasma surface treatment methods include processes like: cleaning, activating, etching the surface. These processes are used as pre-treatment of metal and plastic surfaces for further processes such as: soldering, gluing, painting, print. In contrast to chemical methods, the plasma methods do not require the chemical agents (solvents, acids, alkalis) and large amounts of water, so they are friendly to environment [1-3]. Plasma surface treatment methods also include such processes as: surface modification, surface coating, and thin film deposition. Using plasma methods allows to significantly change the properties of only the surface of materials without changing their properties at the greater depths. Plasma methods can be used for the processing of metals, polymers, glass and fibres, both natural and synthetic. They are used to change the surface properties such as wettability, adhesion, hardness, scratch resistance, permeability, corrosion resistance and others. [4-7]. Plasma surface treatment methods are used in the electronics, automotive, aerospace, textiles and biomedical industries (e.g.: implants) [8-11]. As a response to demand of industry recently we presented a novel compact microwave (2.45 GHz) plasma device for surface treatment [12, 13]. However the knowledge about plasma properties is necessary for development of plasma surface treatment technology. Optical emission spectroscopy (OES) is a powerful and useful tool in the characterization of plasma [14]. Fig. 1. The experimental setup for spectroscopic study of argon microwave atmospheric pressure plasma-sheet. PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 94 NR 7/2018 91 Experiments The plasma was generated in waveguide-supplied microwave plasma-sheet source (MPS) operated at 2.45 GHz. Investigated MPS[...]

Microwave plasma module for destruction of oil slicks

Czytaj za darmo! »

Design of mobile device for oil slicks destruction on the sea using microwave plasma is presented. Microwave plasma was formed in nitrogen flowing with a rate of 10 L/min. Such plasma causes evaporation and partial oxidation of oil separated from water. In the next step gaseous hydrocarbons are fully oxidized in a reactor of dielectric barrier discharge. Streszczenie. Przedstawiono projekt pływającego urządzenia do niszczenia plam ropopochodnych na powierzchni morza za pomocą plazmy mikrofalowej. Plazma mikrofalowa jest generowana w azocie przepływającym z natężeniem 10 dm3/min. Plazma powoduje odparowanie i częściowe utlenienie składników ropopochodnych oddzielonych wcześniej od wody w separatorze. W kolejnym etapie następuje całkowite utlenienie gazowych węglowodorów w reaktorze wyładowania barierowego. (Moduł plazmy mikrofalowej do niszczenia plam ropy). Keywords: plasma, microwave discharges, oil slicks. Słowa kluczowe: plazma, wyładowania mikrofalowe, wycieki ropy. Introduction During the last decade shipping has steadily increased, reflecting intensifying co-operation and economic prosperity around the Baltic Sea region. An average of 2,000 ships are at sea each day, including 200 tankers carrying oil or other potentially harmful products. It is estimated that the transportation of goods by sea will double by 2017 in the Baltic region. General cargo and container traffic is expected to triple, and oil transportation may increase by 40%. The expansion and construction of oil terminals on the shores of the Gulf of Finland and regional economic growth may lead to even [...]

Hydrogen production by dry reforming of kerosene using microwave plasma DOI:10.15199/48.2016.08.11

Czytaj za darmo! »

This paper presents results of study of dry reforming of kerosene using a microwave plasma. The plasma was generated in waveguide supplied metal-cylinder-based nozzleless microwave plasma source (MPS) operated at 915 MHz. The rotational temperature of heavy species (assumed to be close to gas temperature) was up to 5500 K (for plasma without kerosene). The hydrogen production rate was up to 470 NL[H2]/h and the energy efficiency was 89.5 NL[H2] per kWh of absorbed microwave. Streszczenie. Artykuł przedstawia wyniki badań suchego reformingu nafty w plazmie mikrofalowej (915 MHz). Temperatura rotacyjna cząstek ciężkich (przyjmowana jako zbliżona do temperatury gazu) wynosiła do 5500 K (dla plazmy bez dodatku nafty). Uzyskana wydajność produkcji wodoru wynosiła do 470 NL [H2]/h, natomiast efektywność energetyczna do 89,5 NL [H2] na kWh zaabsorbowanej energii mikrofal. (Produkcja wodoru na drodze suchego reformingu nafty w plazmie mikrofalowej). Keywords: microwave plasma, hydrogen production, kerosene dry reforming. Słowa kluczowe: plazma mikrofalowa, produkcja wodoru, suchy reforming nafty. Introduction The greenhouse effect from CO2 emissions exhorts searching of new energy sources meeting the requirements of being environment-friendly. Hydrogen which has a high heating value per unit mass (120 kJ/g) and does not produce CO2 in its combustion is a promising future energy carrier. Hydrogen is produced by many methods [1]. The conventional technologies of hydrogen production like coal gasification, hydrocarbon reforming and water electrolysis are well developed. Large scale catalytic hydrogen production has been successfully operating in industry for many decades. Currently it is the most developed and economical technique for hydrogen production. Alternative plasma technologies are very promising for hydrogen production using hydrocarbons conversions. Plasma ensures high chemical reactivity environment allowing to avoid expensive an[...]

 Strona 1