Wyniki 1-5 spośród 5 dla zapytania: authorDesc:"JAN SENATORSKI"

Budowa i właściwości warstw duplex typu CrC+(Ni-W) wytwarzanych w procesie chromowania próżniowego

Czytaj za darmo! »

Warstwy chromowane o strukturze węglikowej, wytwarzane na powierzchni stali w procesach chromowania dyfuzyjnego, charakteryzują się dobrymi właściwościami tribologicznymi [1÷5]. Wadą warstw węglikowych jest niedostateczna ich odporność na korozję w roztworach wodnych zawierających niektóre kwasy (np. kwas octowy lub siarkowy) [5, 6]. Zwiększenie odporności korozyjnej warstw, według danych literaturowych [7÷9], można uzyskać m.in. przez elektrolityczne nakładanie niklu przed procesem dyfuzyjnym. Wyniki badań własnych [9÷11] dotyczących warstw chromowanych o strukturze węglikowej wykazały, że dzięki połączeniu procesu chromowania próżniowego ze wstępnym osadzaniem na powierzchni stali powłok elektrolitycznych z niklu lub jego stopów, np. z wolframem, można otrzymać warstwy duplex typu CrC+Ni lub CrC+(Ni-W), których odporność na korozję jest kilka razy większa od odporności korozyjnej warstw węglikowych typu CrC, wytwarzanych bezpośrednio na powierzchni stali, bez powłoki elektrolitycznej. Badania właściwości tribologicznych tych warstw wykazały, że warstwy duplex typu CrC+(Ni-W) wytwarzane przez osadzanie przed chromowaniem próżniowym powłok ze stopów niklu, zawierających pierwiastek węglikotwórczy, charakteryzują się dobrą odpornością na zużycie przez tarcie, podczas gdy warstwy duplex typu CrC+Ni otrzymywane przez nakładanie powłok z czystego niklu na powierzchnię stali przed chromowaniem nie są odporne na zużycie przez tarcie [9, 10]. Celem pracy było zbadanie budowy warstw duplex typu CrC+(Ni-W) w połączeniu z badaniami ich odporności na zużycie przez tarcie oraz wyjaśnienie, dlaczego obecność pierwiastka węglikotwórczego - wolframu - w stopach niklu, osadzanych na powierzchni stali przed dyfuzyjnymi procesami chromowania próżniowego, umożliwia wytwarzanie warstw wykazujących dobre właściwości tribologiczne, podczas gdy warstwy duplex typu CrC+Ni otrzymywane przez osadzanie czystego niklu na powierzchni stali nie wykazują [...]

Surface layer of austenitic stainless steel formed by alloying with REE using high intense pulsed plasma beams (HIPPB)

Czytaj za darmo! »

Austenitic stainless steels are used in different industrial applications, due to their very good corrosion resistance - for example: nuclear and petrochemical industries, pulp and paper chemical, food and chemical processing and biomedical industries. But simultaneously austenitic stainless steels have poor tribological properties. Improvement of the wear resistance of austenitic stainless steels without loss of corrosion resistance is very important direction in materials engineering. Oxidation of austenitic stainless steel is the point of interest of many authors [1÷3]. Corrosion of supercritical water oxidation (SCWO) vessels has become one of the major problems in industrial application. Common reactor materials, like stainless steels, can be used in the SCWO systems [3, 4]. Improvements of useful properties of austenitic stainless steel can be achieved using different surface treatment, for example: resolidification techniques or enrichment of the surface layer with reactive elements. High oxygen affinity elements such as Y, Ce, La, Er and other rare earth elements (REE) added to steels in small amounts can improve their resistance for electrochemical corrosion [5], oxidation-including high temperature oxidation [1, 5] and wear [6]. REE can be alloyed during the steel making process or can be added to the surface region of materials using different surface modification techniques. Examples of such modification processes are as follow: ion implantation [5, 7], sol-gel coating [7], pulsed plasma beams [8, 9]. Pulsed energy can be delivered to the surface of a given material by laser, electron, ion and plasma beams [2, 9, 10, 11]. When high intensity, short duration ion or plasma pulses hit a material, they can modify the structure of its near-surface region. The main difference between laser & electron and ion & plasma beams relies upon the fact that these last two media can deliver to material energy and also the foreign i[...]

Wpływ powierzchniowych warstw azotku tytanu wytwarzanych metodami PVD na właściwości użytkowe stopów aluminium


  Mała gęstość i inne korzystne własności oraz relatywnie przystępna cena sprawiły, że stopy aluminium pod względem wykorzystania we współczesnej technice są drugą po stalach i żeliwach grupą tworzyw metalicznych stosowaną w różnorodnych obszarach. Barierą dla jeszcze szerszego ich wykorzystania są własności powierzchniowe, w tym w zwłaszcza niska twardość i odporność na zużycie przez tarcie. Dlatego szczególna rola w uzyskaniu własności użytkowych umożliwiających stosowanie stopów aluminium w warunkach zwiększonych narażeń tribologicznych przypada inżynierii powierzchni. Biorąc pod uwagę zachęcające doświadczenia własne dotyczące zwiększania własności użytkowych stopów magnezu za pomocą powierzchniowych warstw azotków [1, 2], można sądzić, że wytwarzanie metodami PVD powierzchniowych warstw azotków, zwłaszcza azotków tytanu, jest jednym z potencjalnie skutecznych rozwiązań również w odniesieniu do stopów aluminium. Analiza nielicznych źródeł literaturowych dotyczących tego zagadnienia [3÷6] wykazuje, że jest ono słabo rozpoznane, zwłaszcza w aspekcie wpływu warstw azotków na własności korozyjne stopów aluminium. Ze względu na katodowy w porównaniu z aluminium charakter tych warstw i ich zdefektowanie wynikające z specyfiki metod PVD wpływ wytwarzanych warstw może nie być korzystny. Istotnym z punku widzenia dopuszczalnych obciążeń mechanicznych aspektem wydaje się również kwestia wpływu procesów wytwarzania powierzchniowych warstw azotków metodami PVD na własności mechaniczne, w tym twardość, podłoży ze stopów aluminium. Własności mechaniczne ze względu na podwyższoną temperaturę występującą w procesach osadzania metodami typu PVD w efekcie aktywowanych cieplnie procesów takich jak zdrowienie, rekrystalizacja i przestarzenie mogą ulegać niekorzystnym zmianom. W pracy podjęto badania wpływu powierzchniowych warstw azotku tytanu TiN na twardość, odporność tribologiczną i korozyjną wybranych stopów aluminium do utwardzania wyd[...]

Modification of structure and properties of unalloyed steels with intense argon and nitrogen plasma pulses

Czytaj za darmo! »

It is known, that phase - of the Fe-intestitial element phase equilibrium diagram - transformations into austenite can take place in the surface layer of steels irradiated with intense pulses of laser, ion or plasma beams. Due to the presence of nitrogen and carbon expanded austenite in stainless steel, good corrosion resistance is maintained while the wear resistance is increased. Unalloyed [...]

 Strona 1