A fair distribution scheme for joint fingerprinting and decryption methods DOI:10.15199/59.2016.7.5
The paper addresses the fairness of the security provided
by digital fingerprinting methods. It was noted that the
digital fingerprinting techniques are designed primarily
to protect service providers against the actions of malicious
users, while honest users remain vulnerable to acts of malicious
providers. The paper describes the customer’s rights problem and the
unbinding problem, which also apply to joint fingerprinting and decryption
methods. The author proposes a solution to these problems in the form of
fair distribution scheme for joint fingerprinting and decryption methods. The
proposed scheme is fair, because it provides the expected protection from
the perspective of both the provider and the customer. Mutual authentication
is realized using certificates and digital signatures. The scheme does not
require that the customer contact with any other party than the seller and,
simultaneously, does not require cooperation with the customer during the
identification of malicious users.
Key words: digital fingerprinting; joint fingerprinting and decryption; customer’s
rights problem; unbinding problem; key distribution.1. INTRODUCTION
Nowadays, digital multimedia have such a high value that
it must be protected in an appropriate way. Illegal copying and
redistribution of digital media leads to copyright infringement. This
problem causes both financial and moral loss to the authors and
their publishers every day. The identification of malicious users is
called traitor tracing [1, 2, 3]. In order to solve this problem, digital
fingerprinting methods are used. In digital fingerprinting methods,
unique authenticating sequences are embedded in the multimedia
content. These sequences, called fingerprints, are embedded in
an imperceptible manner and therefore all fingerprinted copies
on the multimedia content are visually identical. In the case of
illegal distribution of a fingerprinted copy by malicious user, it is
pos[...]
PORÓWNANIE NOWYCH METOD FINGERPRINTINGU I DESZYFRACJI DO ZABEZPIECZANIA OBRAZÓW KOLOROWYCH DOI:10.15199/59.2016.6.18
A COMPARISON OF THE NEW JOINT FINGERPRINTING AND DECRYPTION FOR SECURING
COLOR IMAGES
Streszczenie: W artykule porównano nowe metody łącznego
fingerprintingu i deszyfracji JFD (ang. Joint Fingerprinting
and Decryption) dla obrazów kolorowych zaproponowane
w rozprawie doktorskiej dr inż. Bartosza Czaplewskiego.
Metody porównano z innymi metodami JFD znanymi
z literatury. Metody zostały porównane w kontekście
niezauważalności fingerprintów, odporności na szum, odporności
na kompresję, odporności na ataki zmowy, oraz
odporności na ataki zmowy połączone z kompresją.
Abstract: The article compares the new joint fingerprinting
and decryption methods for color images proposed in the
doctoral dissertation of Bartosz Czaplewski, Ph.D. Eng.
The methods were compared to other JFD methods from
the literature. The methods were compared in the context
of imperceptibility of fingerprints, resistance to noise, resistance
to compression, resistance to collusion attacks, and
resistance to collusion attacks with compression.
Słowa kluczowe: ataki zmowy, cyfrowy odcisk palca,
łączny fingerprinting i deszyfracja, multimedia
Keywords: collusion attacks, digital fingerprinting, joint
fingerprinting and decryption, multimedia
1. WSTĘP
Problemem badawczym jest przeciwdziałanie zjawisku
nielegalnego rozpowszechniania multimediów.
Znane są rozwiązania wykorzystujące techniki cyfrowego
odcisku palca (ang. digital fingerprinting), polegające
na osadzaniu ukrytych danych w multimediach, których
obecność ma służyć identyfikacji piratów. W ostatnich
latach powstały metody łącznego fingerprintingu i deszyfracji
JFD (ang. Joint Fingerprinting and Decryption),
które charakteryzują się minimalnym zapotrzebowaniem
na zasoby sieciowe i obliczeniowe. Jednakże,
dotychczasowe metody JFD posiadają istotne
wady, np. brak odporności na ataki zmowy lub brak
odporność na kompresję. Większość rozwiązań zostało
zaprojektowanych dla obrazów w odcieniach szarości, a
i[...]
Current trends in the field of steganalysis and guidelines for constructions of new steganalysis schemes DOI:10.15199/59.2017.10.3
1. Introduction
Steganography is a field of science of concealing communications
by hiding secret messages within other data, e.g.
images. At the sender side, the aim of steganography scheme
is to embed a secret message into innocent-looking image
called cover image. An image containing hidden message is
called stego image and is usually transmitted through public
channel. At the receiver side, the aim of steganography scheme
is to extract the hidden message from the received stego
image. Thus, a steganography scheme includes two parts: the
embedding algorithm and the extraction algorithm.
There are three steganographic architectures [1]: steganography
by cover selection, steganography by cover synthesis
and steganography by cover modification. In steganography
by cover selection, the sender communicates the secret message
by choosing a cover image that has hidden meaning. In
steganography by cover synthesis, the sender creates his own
cover image which carry the secret message. In steganography
by cover modification, the sender introduces modifications to
a cover image in order to hide the secret message. This article
concerns the steganography by cover modification.
Steganalysis is a field of science of detecting secret communications
carried by steganography schemes. The aim of
steganalysis is to detect the presence of a hidden message in
test image by distinguishing between stego and cover images.
If a stego image is detected then the secret communication is
revealed and the steganography scheme is broken. It is not
necessary to discover the content of the secret message to
break the steganography scheme, since determining the presence
of the message is sufficient. Steganalysis schemes are
the focus of this article.There are three steganalysis scenarios [1]: passive steganalysis,
active steganalysis, and malicious steganalysis. In passive
steganalysis, the communication is observed and analyzed,
but not interfered, in o[...]
RECEIVER-SIDE FINGERPRINTING METHOD FOR COLOR IMAGES BASED ON A SERIES OF QUATERNION ROTATIONS DOI:10.15199/59.2015.8-9.60
The proposed method is a new Joint
Fingerprinting and Decryption (JFD) method that uses a
cipher based on quaternion rotation to encrypt color
images that are then sent to all users via multicast
transmission. Individual decryption keys depend on the
users’ fingerprints, so that a unique fingerprint is
introduced into the image during decryption for each
decryption key. A simulation-based research was
conducted to examine the method’s robustness against
collusion attacks.
1. INTRODUCTION
This paper addresses the problem of unauthorized
redistribution of multimedia content by malicious users
(pirates). There are two ways to protect distributed
multimedia: encryption and digital fingerprinting [1].
The goal of encryption is to ensure that only authorized
users with proper decryption keys are able to use
distributed multimedia. However, after decryption the
data loses its protection and may be illegally
redistributed by malicious users. In order to maintain
security after decryption it is necessary to use a digital
fingerprint. Digital fingerprinting is a data hiding
technique in which data is protected by unique
sequences, called fingerprints. Each fingerprint identifies
an individual user and is embedded in the image in such
a way that it is imperceptible to the human eye. If a
pirate redistributes his or her copy, the analysis of the
embedded fingerprint should allow to identify the pirate.
Joint Fingerprinting and Decryption (JFD) [2,3,4,5]
methods combine encryption and fingerprinting through
embedding fingerprints during decryption process. The
distribution side encrypts multimedia by using the
encryption key and then sends the encrypted data via
multicast transmission. Each user has a unique
decryption key which is different from the encryption
key and introduces some minor changes into decrypted
images. These changes are imperceptible to the human
eye and are unique for each user, hence they are the
us[...]
EVENTS VISUALIZATION POST IN A DISTRIBUTED TELEINFORMATION SYSTEM FOR THE BORDER GUARD DOI:10.15199/59.2017.8-9.77
Events Visualization Post is part of the STRADAR
project [1], which is dedicated to streaming real-time
data in distributed dispatcher and teleinformation systems
of the Border Guard (BG). The project is implemented
for the security and defense and it is funded by
the National Centre for Research and Development. The
project is the extension of the KONSOLA project [2,3].
The STRADAR project consists of multiple stationary
and mobile elements [1], although the most significant
are the Center Server (CS), the Archival server
(AS) and the Events Visualization Post (EVP) [4]. The
CS runs the custom Map Server (MS) application, manages
the list of visualization tasks, and performs various
management operations. The MS provides access to data
on naval situation for visualization on digital maps. The
AS provides access to archived data, which can be of
various types: files, images, SMS, SDS, video, or audio.
Finally, the EVP enables interactive visualization of
data, generation of new visualization tasks, and some
minor control functions.
The Events Visualization Post is a software designed
for simultaneous visualization of data of different
types in BG headquarters which operates on a PC with a
very high resolution multi-screen display for visualization
and a standard display for management. In terms of
visualization, the EVP allows the operator to visualize
files, images, SMS, SDS, video, audio, and current or
archival data on naval situation on digital maps. All the
visualized data can be synchronized in time. In terms of
generation of new visualization tasks, the EVP allows
the operator to define a great number of parameters of
the task. For both the generation of new tasks and the
visualization of data, the EVP communicates with the
CS, which, if necessary, communicates with the AS.
In regard to visualization of naval situation on digital
maps, the discussed fragment of the system can be
considered a Vessel Traffic Service[...]
Stradar - rozproszony system dyspozytorski i teleinformatyczny dla Straży Granicznej DOI:10.15199/59.2017.11.1
Warunkiem spełnienia zadań przez Straż Graniczną jest wyposażenie
jej w odpowiedni system zbierania, przetwarzania, udostępniania
danych dla ich analizy, wynikającej z potrzeb i działań operacyjnych
[8, 9, 10, 13, 14, 15, 16, 17]. Rodzaj i zakres zbieranych
danych oraz funkcjonalność systemu jest uzależniona od typu granicy,
na której ma być zastosowany system. W artykule przedstawiono
wynik projektu takiego systemu wykonanego dla obsługi morskiej
granicy państwa. Projekt ten współfinansowało Narodowe Centrum
Badań i Rozwoju. Celem było wykonanie demonstratora technologicznego,
umożliwiającego eksplorację i archiwizację: sygnałów
mowy, danych mapowych zawierających informacje AIS (Automatic
Identification System), radarowe oraz GPS (Global Positioning
System), sygnałów wideo, komunikatów SMS (Short Message
service), kolekcjonowanych na serwerach archiwizacji włączonych
w sieć IP Straży Granicznej. W skład demonstratora technologicznego
wchodzą następujące elementy funkcjonalne, będące
konsekwencją uwzględnienia wyników projektu KONSOLA [11]
oraz wymagań i założeń przyjętych dla projektu STRADAR [11]:
centrum, serwery archiwizacji SA, stanowisko wizualizacji zdarzeń
SWZ, jednostka mobilna JM, punkt obserwacyjny PO. W celu realizacji
projektu i przeprowadzenia badań, demonstrator technologiczny
uzupełniono o dodatkowe środowisko badawcze, w skład
którego wchodzą: system MCS IP, serwer webowy UM, sieć IP,
komputery pomocnicze do symulacji i emulacji zdarzeń, tester
protokołów.
Podczas wykonywania projektu - na podstawie wyników
przeprowadzonych badań i proponowanych koncepcji systemu
STRADAR [1, 5] - zdefiniowano wymagania funkcjonalne
demonstratora, dobrano technologie i narzędzia informatyczne,
dokonano dekompozycji blokowo-funkcjonalnej urządzenia, określono
zasoby sprzętowo-programowe dla jego realizacji. Na tej
podstawie zrealizowano warstwę sprzętową demonstratora oraz
wybrane elementy systemu MCS (Multifunctional Communi[...]