Wyniki 1-1 spośród 1 dla zapytania: authorDesc:"Inez Kowalczyk"

Właściwości przetwórcze nowych kopolimerów estrowych o właściwościach elastomerowych na bazie surowców pochodzenia roślinnego DOI:10.15199/28.2015.6.41

  Processability of new bio-based ester block copolymers exhibiting rubber-like elasticity The use of plant biomass as a source of compounds with different chemical structures, gives a possibility for the synthesis of new bio-polymers with similar or even better physical properties if compared to those petrochemical based. One of the compounds of particularly high importance in polymer synthesis is 2.5-furanodicarboxylic acid (FDCA), derived from polysaccharides. It has the potential to replace the terephthalic acid in the synthesis of thermoplastic polyesters and their copolymers. Use of FDCA in the synthesis of polyester rigid segments and dimerized fatty acids as flexible segments allows to obtain ester block copolymers, 100% bio-based, with processabitity typical for thermoplastics. Thus, the aim of presented research is to evaluate the thermal properties and materials behaviour under processing conditions, as due to their novelty there is no guidance on their rheological characteristics nor recommendations for processing. Poly(trimethylene 2.5-furandicarboxylate) (PTF) homopolymer and its copolymers with different weight % content of dimerized fatty acids diol (DDFA) were investigated. The results of thermal analysis and melt flow index (MVR) indicated, that an increase of DDFA flexible segments effects both softening and melting temperature decreasing, whilst the thermo-oxidative stability is improved. Moreover, due to the presence of ester groups in polymer chains copolymers are sensitive to moisture content during processing, and they need to be dried carefully before the process. However DDFA content reduces this sensitivity due to its highly hydrophobic nature. Anyway, the bio-based new copolymers may be processed as typical thermoplastics, what gives a broad range of possible forms and designs in materials potential applications. Key words: 2.5-furandicarboxylic acid, copolymers, renewable resources, melt flow index. Wykorzystanie bi[...]

 Strona 1