Wyniki 1-4 spośród 4 dla zapytania: authorDesc:"Tang Houjun"

Two-objective optimization design for the transcutaneous energy transmission system

Czytaj za darmo! »

The Transcutaneous energy transmission (TET) systems suffer two major drawbacks, due to the weak mutual coupling and large leakage inductance: low efficiency and low power transfer capability. This paper proposes an optimization method which considers both efficiency and power transfer capability to meet different practical application. We have used MATLAB/SIMULINK to verify the analytical results. A comparison of the results validates our optimization method, and shows enhanced performance. Streszczenie. Bezprzewodowy system transmisji energii TET stosowany przy implantach jest obarczony niedogodnościami - słabym sprzężeniem obwodów, dużą indukcyjnością rozproszenia i małą efektywnością. W artykule zaproponowano optymalizację tego systemu. (Optymalizacja systemu bezprzewodowej transmisji energii stosowanej przy implantach) Keywords: transcutaneous energy transmission (TET) system, transmission efficiency, power transfer capability, nonlinear constrained optimization, genetic algorithm, biomedical implantable devices. Słowa kluczowe: bezprzewodowa transmisja energii, implanty. 1. Introduction The implantable biomedical devices, including left ventricular assist devices (LVAD), pacemakers and implantable cardioverter defibrillators (ICD), are used to monitor and treat physiological conditions within the body [1]-[4]. Although these devices often save lives, they can occasionally malfunction because of shortage of power. The traditional way of charging these devices is to penetrate skin with wires, which results in the risk of infection and in the cost of patient’s freedom of daily living activities. The transcutaneous energy transmission (TET) systems are designed to deliver power from a primary source to a secondary implantable device through a dermal skin layer via time-varying electromagnetic fields. A typical TET system is illustrated in Fig.1. The electromagnetic field generated by the in vitro part of the TET system and [...]

Analysis and Design Considerations for the Transcutaneous Energy Transmission System

Czytaj za darmo! »

Transcutaneous energy transmission (TET) systems are designed to deliver power from an in vitro primary power source to in vivo implantable secondary over relatively large air gaps via magnetic coupling. This paper proposes an optimization method with given output power to meet different practical application. The transmission efficiency is the objective function; primary and secondary coils are design variables; constraints are based on bifurcation phenomenon and components peak over-voltage and peak withstand current. We have used experimental prototype to verify the analytical results. Streszczenie. System transmisji energii przezskórny TET stosowany jest do bezprzewodowego zasilania implant za pośrednictwem pola magnetycznego. W artykule zaprezentowano metody optymalizacji systemu na przykładach praktycznych aplikacji. (Analiza i projekt przezskórnej transmisji energii) Keywords: transcutaneous energy transmission (TET) system; transmission efficiency; power transfer capability Słowa kluczowe: przeskórny system transmisji TET, implanty 1. Introduction The implantable biomedical devices, including left ventricular assist devices (LVAD), pacemakers and implantable cardioverter defibrillators (ICD), are used to monitor and treat physiological conditions within the body [1][2]. Although these devices often save lives, they can occasionally malfunction because of shortage of power. The traditional way of charging these devices is to penetrate skin with wires, which results in the risk of infection and in the cost of patient’s freedom of daily living activities. Fig 1 shows the power demand of several implantable devices. 1mW 10mW 100mW 1W 10W Pacemakers Cochlear Implant Functional electrical stimulation Artificial heart Fig.1. Power demand of several implantable devices The transcutaneous energy transmission (TET) systems are designed to deliver power from a primary source to a secondary implantable device through a dermal [...]

Bi-directional Contactless Inductive Power Transfer System Modeling and verifying

Czytaj za darmo! »

This paper presents an approach for the modeling of bi-directional contactless inductive power transfer (CIPT) system based on the generalized state space averaging (GSSA) method. By using the proposed method, a dynamic model can be realized by a linear model. The validity of the model is verified by theoretical analysis, simulations and experimental results of a 2kW prototype bi-directional CIPT system with a 1mm airgap. Results indicate that the proposed model is an ideal analysis tool for CIPT system . Streszczenie. Zaprezentowano system bezprzewodowej, dwukierunkowej transmisji mocy CIPT. Metoda była zweryfikowana teoretycznie, przez symulacje oraz eksperymentalnie w systemie transmisji mocy 2 kW przez szczelinę 1 mm. (Dwukierunkowa bezprzewodowa transmisja mocy - model i eksperymentalna weryfikacja) Keywords: Bi-directional Contactless Inductive Power Transfer, Generalized State Space Averaging Method, dynamic model, steady state model. Słowa kluczowe: beprzewodowa transmisja mocy Introduction Energy crisis is threatening people with the depletion of fossil energy, save energy and reduce the cost, increase resource utilization rate and reduce waste are major worldwide concerns [1]-[3]. Therefore, techniques for charging and discharging of electric equipments with the emphasis on simplicity, low cost, convenience, high efficiency and flexibility, have become the main focus of current research in both industrial and academic community. The magnetic field has widely used for the transfer of power or information. Inductive contactless power transfer (CIPT) systems are designed to deliver power efficiently from a primary source to a secondary load over relatively large air gaps via magnetic coupling. According to CIPT system literature, with various circuit topologies and control method have been proposed, which range from very low power bio-medical implants to high power electric vehicle systems [4]-[10]. Most of these papers ha[...]

Wireless Energy Transmission System Based on LLC Resonant Converter

Czytaj za darmo! »

This paper presents a wireless transcutaneous energy transmission system based on LLC topology. Because the coupling coefficient of the transformer is not good as normal transformer, a resonant converter is required for the transcutaneous energy transmission system. This paper proposed a transcutaneous energy transmission system based on the LLC type resonant converter rather than traditional SS or SP resonant converter. Finally, an experimental prototype is set up to validate advantages of LLC type transcutaneous energy transmission system. Streszczenie. W artykule zaprezentowano metodę bezprzewodowej transmisji energii bazującej na obwodzie LLC. Dla poprawienia sprzężenia zastosowano obwód rezonansowy. Przedstawiono badania eksperymentalne systemu. (Bezprzewodowa transmisja energii bazująca na rezonansowym obwodzie LLC) Keywords: transcutaneous energy transmission system, LLC, resonant converter Słowa kluczowe: bezprzewodowa transmisja energii, obwód LLC.. Introduction The transcutaneous energy transmission system (TETS) is designed to deliver power efficiently to implanted biomedical devices, such as artificial hearts and cardiac assist devices from out of patients’ body through electromagnetic coupling technology [1]-[5]. As an emerging technology, TETS has drawn scientists and researchers’ attention in the world. Since 1990th, Prof. J. T. Boy’s group in Auckland University has done lots of works on TETS [1]. Stefan V. Mollov from University of Birmingham has carried out research into remote energy transfer for artificial human implants [3]. Experiments on TETS for artificial hearts have been performed by Shinsuke Arai’s group in Japan [7]-[10]. Because there is a gap between primary side and secondary side of the loosely coupled transformer, the mutual coupling inductance is generally weak. As a result, the power transferred to the secondary side is relatively low. So a resonant tank should be added in[...]

 Strona 1