Czasopisma
Czasopisma
Czasopisma
ATEST - OCHRONA PRACY
ATEST - OCHRONA PRACY
AURA
AURA
AUTO MOTO SERWIS
AUTO MOTO SERWIS
CHEMIK
CHEMIK
CHŁODNICTWO
CHŁODNICTWO
CIEPŁOWNICTWO, OGRZEWNICTWO, WENTYLACJA
CIEPŁOWNICTWO, OGRZEWNICTWO, WENTYLACJA
DOZÓR TECHNICZNY
DOZÓR TECHNICZNY
ELEKTROINSTALATOR
ELEKTROINSTALATOR
ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA
ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA
Czasopisma
Czasopisma
Czasopisma
GAZETA CUKROWNICZA
GAZETA CUKROWNICZA
GAZ, WODA I TECHNIKA SANITARNA
GAZ, WODA I TECHNIKA SANITARNA
GOSPODARKA MIĘSNA
GOSPODARKA MIĘSNA
GOSPODARKA WODNA
GOSPODARKA WODNA
HUTNIK - WIADOMOŚCI HUTNICZE
HUTNIK - WIADOMOŚCI HUTNICZE
INŻYNIERIA MATERIAŁOWA
INŻYNIERIA MATERIAŁOWA
MASZYNY, TECHNOLOGIE, MATERIAŁY - TECHNIKA ZAGRANICZNA
MASZYNY, TECHNOLOGIE, MATERIAŁY - TECHNIKA ZAGRANICZNA
MATERIAŁY BUDOWLANE
MATERIAŁY BUDOWLANE
OCHRONA PRZECIWPOŻAROWA
OCHRONA PRZECIWPOŻAROWA
OCHRONA PRZED KOROZJĄ
OCHRONA PRZED KOROZJĄ
Czasopisma
Czasopisma
Czasopisma
ODZIEŻ
ODZIEŻ
OPAKOWANIE
OPAKOWANIE
PACKAGING REVIEW
PACKAGING REVIEW
POLISH TECHNICAL REVIEW
POLISH TECHNICAL REVIEW
PROBLEMY JAKOŚCI
PROBLEMY JAKOŚCI
PRZEGLĄD ELEKTROTECHNICZNY
PRZEGLĄD ELEKTROTECHNICZNY
PRZEGLĄD GASTRONOMICZNY
PRZEGLĄD GASTRONOMICZNY
PRZEGLĄD GEODEZYJNY
PRZEGLĄD GEODEZYJNY
PRZEGLĄD MECHANICZNY
PRZEGLĄD MECHANICZNY
PRZEGLĄD PAPIERNICZY
PRZEGLĄD PAPIERNICZY
Czasopisma
Czasopisma
Czasopisma
PRZEGLĄD PIEKARSKI I CUKIERNICZY
PRZEGLĄD PIEKARSKI I CUKIERNICZY
PRZEGLĄD TECHNICZNY. GAZETA INŻYNIERSKA
PRZEGLĄD TECHNICZNY. GAZETA INŻYNIERSKA
PRZEGLĄD TELEKOMUNIKACYJNY - WIADOMOŚCI TELEKOMUNIKACYJNE
PRZEGLĄD TELEKOMUNIKACYJNY - WIADOMOŚCI TELEKOMUNIKACYJNE
PRZEGLĄD WŁÓKIENNICZY - WŁÓKNO, ODZIEŻ, SKÓRA
PRZEGLĄD WŁÓKIENNICZY - WŁÓKNO, ODZIEŻ, SKÓRA
PRZEGLĄD ZBOŻOWO-MŁYNARSKI
PRZEGLĄD ZBOŻOWO-MŁYNARSKI
PRZEMYSŁ CHEMICZNY
PRZEMYSŁ CHEMICZNY
PRZEMYSŁ FERMENTACYJNY I OWOCOWO-WARZYWNY
PRZEMYSŁ FERMENTACYJNY I OWOCOWO-WARZYWNY
PRZEMYSŁ SPOŻYWCZY
PRZEMYSŁ SPOŻYWCZY
RUDY I METALE NIEŻELAZNE
RUDY I METALE NIEŻELAZNE
SZKŁO I CERAMIKA
SZKŁO I CERAMIKA
TECHNOLOGIA I AUTOMATYZACJA MONTAŻU
TECHNOLOGIA I AUTOMATYZACJA MONTAŻU
WIADOMOŚCI ELEKTROTECHNICZNE
WIADOMOŚCI ELEKTROTECHNICZNE
WOKÓŁ PŁYTEK CERAMICZNYCH
WOKÓŁ PŁYTEK CERAMICZNYCH
Menu
Menu
Menu
Prenumerata
Prenumerata
Publikacje
Publikacje
Drukarnia
Drukarnia
Kolportaż
Kolportaż
Reklama
Reklama
O nas
O nas
ui-button
Twój Koszyk
Twój koszyk jest pusty.
Niezalogowany
Niezalogowany
Zaloguj się
Zarejestruj się
Reset hasła
Czasopismo
|
OCHRONA PRZED KOROZJĄ
|
Rocznik 2022 - zeszyt 12
Resistance of geopolymers to chemical aggression. Literature study
Odporność geopolimerów na agresję chemiczną. Studium literaturowe
10.15199/40.2022.12.2
Barbara Słomka-Słupik
Paulina Wiśniewska
nr katalogowy: 141092
10.15199/40.2022.12.2
Streszczenie
Geopolymers, or mineral polymers, are binders formed as a result of the alkaline activation of anthropogenic or natural minerals. Recently, they have attracted the attention of many scientists who justify the need to reduce carbon dioxide emissions during cement production by using other materials. The paper lists the materials used in the production of geopolymer binders, describes the geopolymerization process, and characterizes the method of corrosion of cement binders in relation to the results of research carried out on geopolymer binders. The main focus was on the resistance of geopolymers to chemical factors such as acids, sulphates, carbon dioxide and ammonium salts. Chloride penetration was indicated in the context of water absorption depending on the geopolymeric matrix microstructure. The results of the research on the reaction of alkali-silicate geopolymers are also described. Research presented mainly by foreign research units confirmed that geopolymer binders are characterized by much better properties than cement binders.
Abstract
Geopolimery, czyli mineralne polimery, to spoiwa powstające wskutek alkalicznej aktywacji minerałów antropogenicznych lub naturalnych. W ostatnim czasie skupiły uwagę wielu naukowców uzasadniających potrzebę redukcji emisji dwutlenku węgla wydzielającego się podczas wytwarzania cementu przez użycie innych materiałów. W pracy wyszczególniono materiały stosowane w produkcji spoiw geopolimerowych, opisano proces geopolimeryzacji i scharakteryzowano budowę geopolimerów. Porównano również sposób destrukcji materiałów cementowych z geopolimerowymi. Skupiono się głównie na odporności geopolimerów na działanie czynników chemicznych: kwasów, siarczanów, dwutlenku węgla, soli amonowych. Wskazano na wnikanie chlorków jako przykład transportu zależnego od mikrostruktury geopolimerowej matrycy, od możliwości wnikania wody. Opisano również wyniki badań reakcji alkalia-krzemionka zachodzącej w betonach. W badaniach, prezentowanych głównie przez jednostki zagraniczne, potwierdzono, że spoiwa geopolimerowe charakteryzują się dużo lepszymi właściwościami aniżeli spoiwa cementowe.
Słowa kluczowe
geopolymer
destruction
resistance
research
Keywords
geopolimer
destrukcja
odporność
badania
Bibliografia
[1] S. Grzeszczyk. 2021.„Prawda o geopolimerach”. Cement Wapno Beton 26 (2): 101–108. DOI: 10.32047/cwb.2021.26.2.7. [2] T. Luukkonen, Z. Abdollahnejad, J. Yliniemi, P. Kinnunen, M. Illikainen. 2018. “One-Part Alkali-Activated Materials: A Review”. Cement and Concrete Research 103: 21–34. DOI: 10.1016/j.cemconres.2017.10.001 [3] P. Pradhan, S. Dwibedy, M. Pradhan, S. Panda, S.K. Panigrahi. 2022. “Durability Characteristics of Geopolymer Concrete – Progress and Perspectives”. Journal of Building Engineering 59: 105100. DOI: 10.1016/j.jobe.2022.105100. [4] A. Palomo, O. Maltseva, I. García-Lodeiro, A. Fernández-Jiménez. 2021. “Portland Versus Alkaline Cement: Continuity or Clean Break: »A Key Decision for Global Sustainability«”. Frontiers in Chemistry 9: 705475. DOI: 10.3389/ fchem.2021.705475. [5] J. Provis, J.S.J. van Deventer. (eds.) 2014. Alkali-Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM. Dordrecht–London: Springer. [6] B. Słomka-Słupik, P. Wiśniewska, W. Bargieł. 2022. “Multicomponent Low Initial Molar Ratio of SiO2/Al2O3 Geopolymer Mortars: Pilot Research”. Materials 15 (17): 5943. DOI: 10.3390/ma15175943. [7] D. Khale, R. Chaudhary. 2007. “Mechanism of Geopolymerization and Factors Influencing Its Development: A Review”. Journal of Materials Science 42, 729–746. DOI: 10.1007/s10853-006-0401-4. [8] N. Toniolo. 2018. Novel Geopolymers Incorporating Silicate Waste. PhD Thesis. Erlangen-Nürnberg: Der Technischen Fakultät der Friedrich-Alexander-Universität. [9] N.B. Singh, B. Middendorf. 2020. “Geopolymers as an Alternative to Portland Cement: An Overview”. Construction and Building Materials 237: 117455. DOI: 10.1016/j.conbuildmat.2019.117455. [10] J. Davidovits. 2005. Geopolymer Chemistry and Sustainable Development. The Poly(sialate) Terminology: A Very Useful and Simple Model for the Promotion and Understanding of Green-Chemistry. In: J. Davidovits (ed.). Geopolymer, Green Chemistry and Sustainable Development Solutions: Proceedings of the World Congress Geopolymer 2005. Saint-Quentin, France: Institut Géopolymère. [11] W.K.W. Lee, J.S.J. van Deventer. 2004. “The Interface Between Natural Siliceous Aggregates and Geopolymers”. Cement and Concrete Research 34 (2): 195–206. DOI: 10.1016/S0008-8846(03)00250-3. [12] K. Rajczyk, G. Janus. 2021. „Mikrostruktura i właściwości geopolimerów powstających w procesie alkalicznej aktywacji popiołu lotnego”. Cement Wap- no Beton 26 (4): 279–293. DOI: 10.32047/CWB.2021.26.4.2. [13] J. Ren, L. Zhang, B. Walkley, J.R. Black, R.S. Nicolas. 2022. “Degradation Resistance of Different Cementitious Materials to Phosphoric Acid Attack at Early Stage”. Cement and Concrete Research 151: 106606. DOI: 10.1016/j. cemconres.2021.106606. [14] A. Fernández-Jiménez, A. Palomo. 2009. Chemical Durability of Geopolymers. In: J.L. Provis, J.S.J. van Deventer (eds.). Geopolymers: Structures, Processing, Properties and Industrial Applications. Cambridge: Woodhead Publishing. [15] D.M. Roy, W. Jiang, M.R. Silsbee. 2000. “Chloride Diffusion in Ordinary, Blended, and Alkali-Activated Cement Pastes and Its Relation to Other Properties”. Cement and Concrete Research 30 (12): 1879–1884. DOI: 10.1016/ S0008-8846(00)00406-3. [16] O. Kayali, M.S.H. Khan, M. Sharfuddin Ahmed. 2012. “The Role of Hydrotalcite in Chloride Binding and Corrosion Protection in Concretes with Ground Granulated Blast Furnace Slag”. Cement and Concrete Composites 34 (8): 936–945. DOI: 10.1016/j.cemconcomp.2012.04.009. [17] H. Zhu, Z. Zhang, Y. Zhu, L. Tian 2014. “Durability of Alkali-Activated Fly Ash Concrete: Chloride Penetration in Pastes and Mortars”. Construction and Building Materials 65: 51–59. DOI: 10.1016/j.conbuildmat.2014.04.110. [18] S.A. Bernal, M. Mejía de Gutiérrez, J.L. Provis. 2012. “Engineering and Durability Properties of Concretes Based on Alkali-Activated Granulated Blast Furnace Slag/Metakaolin Blends”. Construction and Building Materials 33: 99–108. DOI: 10.1016/j.conbuildmat.2012.01.017. [19] K. Kupwade-Patil, E.N. Allouche. 2013. “Examination of Chloride-Induced Corrosion in Reinforced Geopolymer Concretes”. Journal of Materials in Civil Engineering 25 (10): 1465–1476. DOI: 10.1061/(ASCE)MT.1943-5533.0000672. [20] A. Radlińska, J.R. Yost, M.J. Salera. 2013. “Material Properties of Structurally Viable Alkali-Activated Fly Ash Concrete”. Journal of Materials in Civil Engineering 25 (10): 1456–1464. DOI: 10.1061/(ASCE)MT.1943-5533.0000680. [21] R.N. Parshwanath, M.C. Nataraja, N. Lakshmanan, J.K. Dattatreya. 2011. “Rapid Chloride Permeability Test on Geopolymer and Portland Cement Concretes”. Indian Concrete Journal 85 (10): 21–26. [22] S.A. Bernal, J.L. Provis. 2014. “Durability of Alkali-Activated Materials: Progress and Perspectives”. Journal of the American Ceramic Society 97 (4): 997– 1008. DOI: 10.1111/jace.12831. [23] K.V.S. Gopala Krishna Sastry, P. Sahitya, A. Ravitheja. 2021.“Influence of Nano TiO2 on Strength and Durability Properties of Geopolymer Concrete”. Materials Today: Proceedings 45: 1017–1025. DOI: 10.1016/j.matpr.2020.03.139. [24] R. Manjunath, M.C. Narasimhan, K.M. Umesha. 2019.“Studies on High Performance Alkali Activated Slag Concrete Mixes Subjected to Aggressive Environments and Sustained Elevated Temperatures”. Construction and Build- ing Materials 229: 116887. DOI: 10.1016/j.conbuildmat.2019.116887. [25] Md. Sufian Badar, K. Kupwade-Patil, S.A. Bernal, J.L. Provis, E.N. Allouche. 2014. “Corrosion of Steel Bars Induced by Accelerated Carbonation in Low and High Calcium Fly Ash Geopolymer Concretes”. Construction and Building Materials 61: 79–89. DOI: 10.1016/j.conbuildmat.2014.03.015. [26] M.S.H. Khan, A. Castel, A. Noushini. 2017. “Carbonation of a Low-Calcium Fly Ash Geopolymer Concrete”. Magazine of Concrete Research 69 (1): 24–34. DOI: 10.1680/jmacr.15.00486. [27] Z. Shi, C. Shi, S. Wan, N. Li, Z. Zhang. 2018. “Effect of Alkali Dosage and Silicate Modulus on Carbonation of Alkali-Activated Slag Mortars”. Cement and Concrete Research 113: 55–64. DOI: 10.1016/j.cemconres.2018.07.005. [28] M. Nedeljković, B. Ghiassi, S. van der Laan, Z. Li, G. Ye. 2019. “Effect of Curing Conditions on the Pore Solution and Carbonation Resistance of Alkali-Activated Fly Ash and Slag Pastes”. Cement and Concrete Research 116: 146–158. DOI: 10.1016/j.cemconres.2018.11.011. [29] Z. Li, S. Li. 2018. “Carbonation Resistance of Fly Ash and Blast Furnace Slag Based Geopolymer Concrete”. Construction and Building Materials 163: 668– 680. DOI: 10.1016/j.conbuildmat.2017.12.127. [30] Q. Huang, X.S. Shi, Q.Y. Wang, L. Tang. 2015. “The Influence of Carbonization on the Performances of Fly Ash Geopolymeric Concrete”. Applied Mechanics and Materials 744–746: 1519–1526. DOI: 10.4028/www.scientific.net/ AMM.744-746.1519. [31] K. Behfarnia, M. Rostami. 2017. “An Assessment on Parameters Affecting the Carbonation of Alkali-Activated Slag Concrete”. Journal of Cleaner Production 157: 1–9. DOI: 10.1016/j.jclepro.2017.04.097. [32] R. Saxena, T. Gupta, R.K. Sharma, N.L. Panwar. 2021. “Influence of Granite Waste on Mechanical and Durability Properties of Fly Ash-Based Geopolymer Concrete”. Environment, Development and Sustainability 23: 17810– 17834. DOI: 10.1007/s10668-021-01414-z. [33] B. Słomka-Słupik. 2012. Analiza oddziaływania czynników agresywnych na beton obiektów oczyszczalni ścieków. Praca doktorska. Gliwice: Wydział Budownictwa Politechniki Śląskiej. [34] A. Ajay, K.P. Ramaswamy, A.V. Thomas. 2020. “A Critical Review on the Durability of Geopolymer Composites in Acidic Environment”. IOP Conference Series: Earth and Environmental Science 491: 012044. DOI: 10.1088/1755- 1315/491/1/012044. [35] I. García-Lodeiro, A. Palomo, A. Fernández-Jiménez, D.E. Macphee. 2011. “Compatibility Studies between N-A-S-H and C-A-S-H Gels: Study in the Ternary Diagram Na2O–CaO–Al2O3–SiO2–H2O”. Cement and Concrete Research 41 (9): 923–931. DOI: 10.1016/j.cemconres.2011.05.006. [36] A. Koenig, A. Herrmann, S. Overmann, F. Dehn. 2017. “Resistance of Alkali- Activated Binders to Organic Acid Attack: Assessment of Evaluation Criteria and Damage Mechanisms”. Construction and Building Materials 151: 405– 413. DOI: 10.1016/j.conbuildmat.2017.06.117. [37] T. Bakharev. 2005. “Resistance of Geopolymer Materials to Acid Attack”. Cement and Concrete Research 35 (4): 658–670. DOI: 10.1016/j.cemconres. 2004.06.005. [38] I. Fernandes, M. Pericão, P. Hagelia, F. Noronha, M.A. Ribeiro, J. Maia. 2012. “Identification of Acid Attack on Concrete of a Sewage System”. Materials and Structures 45: 337–350. DOI: 10.1617/s11527-011-9769-y. [39] M.A.M. Ariffin, M.A.R. Bhutta, M.W. Hussin, M. Mohd Tahir, Nor Aziah. 2013. “Sulfuric Acid Resistance of Blended Ash Geopolymer Concrete”. Construction and Building Materials 43: 80–86. DOI: 10.1016/j.conbuild- mat.2013.01.018. [40] T. Bakharev, J.G. Sanjayan, Y.B. Cheng. 2003. “Resistance of Alkali-Activated Slag Concrete to Acid Attack”. Cement and Concrete Research 33 (10): 1607– 1611. DOI: 10.1016/S0008-8846(03)00125-X. [41] F.N. Okoye, S. Prakash, N.B. Singh. 2017.“Durability of Fly Ash Based Geopolymer Concrete in the Presence of Silica Fume”. Journal of Cleaner Production 149: 1062–1067. DOI: 10.1016/j.jclepro.2017.02.176. [42] G. Lavanya, J. Jegan. 2015. “Durability Study on High Calcium Fly Ash Based Geopolymer Concrete”. Advances in Materials Science and Engineering 6: 1–7. DOI: 10.1155/2015/731056. [43] D. Adak, S. Mandal. 2019. “Strength and Durability Performance of Fly Ash-Based Process-Modified Geopolymer Concrete”. Journal of Materials in Civil Engineering 31 (9): 04019174. DOI: 10.1061/(ASCE)MT.1943-5533.0002793. [44] S.Ch.K. Bendapudi, K. Ramesh. 2017. “Durability Studies of GGBS and Metakaolin Based Geopolymer Concrete”. International Journal of Civil Engineering and Technology 8 (1): 17–28. [45] W. Yang, P. Zhu, H. Liu, X. Wang, W. Ge, M. Hua. 2021. “Resistance to Sulfuric Acid Corrosion of Geopolymer Concrete Based on Different Binding Materials and Alkali Concentrations”. Materials 14 (23): 7109. DOI: 10.3390/ma14237109. [46] L. Gu, Ph. Visintin, T. Bennett. 2018. “Evaluation of Accelerated Degradation Test Methods for Cementitious Composites Subject to Sulfuric Acid Attack; Application to Conventional and Alkali-Activated Concretes”. Cement and Concrete Composites 87: 187–204. DOI: 10.1016/j.cemconcomp.2017.12.015. [47] A.K. Singh. 2016. “Strength and Durability Test of Fly Ash and GGBS Based Geopolymer Concrete”. International Journal of Engineering Research and Application 6 (8: P. 1): 139–142. [48] N. Ukrainczyk, M. Muthu, O. Vogt, E. Koenders. 2019. “Geopolymer, Calcium Aluminate, and Portland Cement-Based Mortars: Comparing Degradation Using Acetic Acid”. Materials 12 (19): 3115. DOI: 10.3390/ma12193115. [49] W.G. Valencia-Saavedra, R. Mejía de Gutiérrez, F. Puertas. 2020. “Performance of FA-Based Geopolymer Concretes Exposed to Acetic and Sulfuric Acids”. Construction and Building Materials 257: 119503. DOI: 10.1016/j. conbuildmat.2020.119503. [50] K.P. Ramaswamy, M. Santhanam. 2019. Degradation Kinetics of Cement-Based Materials in Citric Acid. In: Lecture Notes in Civil Engineering 11: 891– 905. DOI: 10.1007/978-981-13-0362-3_71. [51] A. Fernández-Jiménez, I. García-Lodeiro, A. Palomo. 2007. “Durability of Alkali-Activated Fly Ash Cementitious Materials”. Journal of Materials Science 42 (9): 3055–3065. DOI: 10.1007/s10853-006-0584-8. [52] Y. Xie, X. Lin, T. Ji, Y. Liang, W. Pan. 2019. “Comparison of Corrosion Resistance Mechanism between Ordinary Portland Concrete and Alkali-Activated Concrete Subjected to Biogenic Sulfuric Acid Attack”. Construction and Building Materials 228: 117071. DOI: 10.1016/j.conbuildmat.2019.117071. [53] A. Palomo, M.T. Blanco-Valera, M.L. Granizo, F. Puertas, T. Vázquez, M.W. Grutzeck. 1999. “Chemical Stability of Cementitious Materials Based on Metakaolin”. Cement and Concrete Research 29 (7): 997–1004. DOI: 10.1016/S0008-8846(99)00074-5. [54] T. Bakharev. 2005. “Durability of Geopolymer Materials in Sodium and Magnesium Sulfate Solutions”. Cement and Concrete Research 35 (6): 1233–1246. DOI: 10.1016/j.cemconres.2004.09.002. [55] S.E. Wallah, D. Hardjito, D.M.J. Sumajouw, B.V. Rangan. 2004. Geopolymer Concrete: A Key for Better Long-Term Performance and Durability. In: V.S. Parameswaran (ed.). International Conference on Fiber Composites, High-Performance Concretes and Smart Material. Chennai: ICFRC. [56] Z. Baščarević, M. Komljenović, Z. Miladinović, V. Nikolić, N. Marjanović, Z. Žujović, R. Petrović. 2013. “Effects of the Concentrated NH4NO3 Solution on Mechanical Properties and Structure of the Fly Ash Based Geopolymers”. Construction and Building Materials 41: 570–579. DOI: 10.1016/j.conbuildmat.2012.12.067. [57] J.T. Gourley, G.B. Johnson. 2005. Developments in Geopolymer Precast Concrete. Paper presented at the International Workshop on Geopolymers and Geopolymer Concrete. Perth, Australia. [58] P. Mazur, J. Mikuła, J.S. Kowalski. 2013.„Odporność na korozję geopolimeru na bazie popiołu lotnego”. Archives of Foundry Engineering 13 (1): 83–86.
Treść płatna
Jeśli masz wykupiony/przyznany dostęp -
zaloguj się
.
Skorzystaj z naszych propozycji zakupu!
Publikacja
OCHRONA PRZED KOROZJĄ- e-publikacja (pdf) z zeszytu 2022-12 , nr katalogowy 141092
licencja: Osobista
Produkt cyfrowy
Nowość
10.00 zł
Do koszyka
Zeszyt
OCHRONA PRZED KOROZJĄ- e-zeszyt (pdf) 2022-12
licencja: Osobista
Produkt cyfrowy
Nowość
44.00 zł
Do koszyka
Prenumerata
OCHRONA PRZED KOROZJĄ - prenumerata cyfrowa
licencja: Osobista
Produkt cyfrowy
Nowość
504.00 zł
Do koszyka
OCHRONA PRZED KOROZJĄ - papierowa prenumerata roczna + wysyłka
licencja: Osobista
Szczegóły pakietu
Nazwa
OCHRONA PRZED KOROZJĄ - papierowa prenumerata roczna
636.00 zł brutto
588.89 zł netto
47.11 zł VAT
(stawka VAT 8%)
OCHRONA PRZED KOROZJĄ - pakowanie i wysyłka
42.00 zł brutto
34.15 zł netto
7.85 zł VAT
(stawka VAT 23%)
678.00 zł
Do koszyka
OCHRONA PRZED KOROZJĄ - PAKIET prenumerata PLUS
licencja: Osobista
Szczegóły pakietu
Nazwa
OCHRONA PRZED KOROZJĄ - PAKIET prenumerata PLUS
762.00 zł brutto
705.56 zł netto
56.44 zł VAT
(stawka VAT 8%)
762.00 zł
Do koszyka
Zeszyt
2022-12
Czasopisma
ATEST - OCHRONA PRACY
AURA
AUTO MOTO SERWIS
CHEMIK
CHŁODNICTWO
CIEPŁOWNICTWO, OGRZEWNICTWO, WENTYLACJA
DOZÓR TECHNICZNY
ELEKTROINSTALATOR
ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA
GAZETA CUKROWNICZA
GAZ, WODA I TECHNIKA SANITARNA
GOSPODARKA MIĘSNA
GOSPODARKA WODNA
HUTNIK - WIADOMOŚCI HUTNICZE
INŻYNIERIA MATERIAŁOWA
MASZYNY, TECHNOLOGIE, MATERIAŁY - TECHNIKA ZAGRANICZNA
MATERIAŁY BUDOWLANE
OCHRONA PRZECIWPOŻAROWA
OCHRONA PRZED KOROZJĄ
ODZIEŻ
OPAKOWANIE
PACKAGING REVIEW
POLISH TECHNICAL REVIEW
PROBLEMY JAKOŚCI
PRZEGLĄD ELEKTROTECHNICZNY
PRZEGLĄD GASTRONOMICZNY
PRZEGLĄD GEODEZYJNY
PRZEGLĄD MECHANICZNY
PRZEGLĄD PAPIERNICZY
PRZEGLĄD PIEKARSKI I CUKIERNICZY
PRZEGLĄD TECHNICZNY. GAZETA INŻYNIERSKA
PRZEGLĄD TELEKOMUNIKACYJNY - WIADOMOŚCI TELEKOMUNIKACYJNE
PRZEGLĄD WŁÓKIENNICZY - WŁÓKNO, ODZIEŻ, SKÓRA
PRZEGLĄD ZBOŻOWO-MŁYNARSKI
PRZEMYSŁ CHEMICZNY
PRZEMYSŁ FERMENTACYJNY I OWOCOWO-WARZYWNY
PRZEMYSŁ SPOŻYWCZY
RUDY I METALE NIEŻELAZNE
SZKŁO I CERAMIKA
TECHNOLOGIA I AUTOMATYZACJA MONTAŻU
WIADOMOŚCI ELEKTROTECHNICZNE
WOKÓŁ PŁYTEK CERAMICZNYCH